Investigating the structure of the oxide on Ni‐Cr‐Mo alloys while presenting a method for analysis of complex oxides using QUASES

Author:

Morgan Adam M.1ORCID,Henderson Jeffrey D.2,Kobe Brad A.2ORCID,Biesinger Mark C.12ORCID,Noël James J.12

Affiliation:

1. Department of Chemistry Western University London Ontario Canada

2. Surface Science Western Western University London Ontario Canada

Abstract

X‐ray photoelectron spectroscopy (XPS) is a technique that is widely used to study thin oxide films because of its extremely high surface sensitivity. Utilizing the QUASES (Quantitative Analysis of Surfaces by Electron Spectroscopy) software package developed by Sven Tougaard (University of Southern Denmark), a user can obtain additional information that is not extracted in conventional XPS analysis, specifically the composition as a function of depth. Presented here is the QUASES analysis of four Ni‐Cr‐Mo alloys performed while testing various inelastic mean free path (IMFP) determination methods in the context of providing a framework for the analysis of complex oxides in QUASES. Ni‐Cr‐Mo alloys are often used to replace conventional materials under aggressive conditions, because of their exceptional corrosion resistance. Their corrosion resistance is conferred by the formation of an inert surface oxide film that protects the underlying metal. Using the QUASES software, the thickness of the air‐formed oxide on four Ni‐Cr‐Mo alloys was found to lie within the range of 2.5–3.6 nm. They were found to be composed of an inner Cr2O3 layer and an outer Cr (OH)3 layer, with a transition zone where the two coexisted. Oxidized Mo species, MoO2 and MoO3, were found in trace amounts at the boundary between the Cr2O3‐only and mixed Cr2O3/Cr (OH)3 regions of the oxide. We also determined that using 20% reduced IMFP values gave results similar to those obtained using electron effective attenuation length (EAL) values. Auger depth profiles showed comparable trends to the QUASES models.

Publisher

Wiley

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3