Improving microstructural integrity, interstitial fluid, and blood microcirculation images from multi‐b‐value diffusion MRI using physics‐informed neural networks in cerebrovascular disease

Author:

Voorter Paulien H. M.12ORCID,Backes Walter H.123ORCID,Gurney‐Champion Oliver J.4,Wong Sau‐May1,Staals Julie35,van Oostenbrugge Robert J.235,van der Thiel Merel M.12,Jansen Jacobus F. A.126ORCID,Drenthen Gerhard S.12ORCID

Affiliation:

1. Department of Radiology and Nuclear Medicine Maastricht University Medical Center Maastricht The Netherlands

2. School for Mental Health and Neuroscience Maastricht University Maastricht The Netherlands

3. School for Cardiovascular Disease Maastricht University Maastricht The Netherlands

4. Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Cancer Center Amsterdam University of Amsterdam Amsterdam The Netherlands

5. Department of Neurology Maastricht University Medical Center Maastricht The Netherlands

6. Department of Electrical Engineering Eindhoven University of Technology Eindhoven The Netherlands

Abstract

PurposeTo obtain better microstructural integrity, interstitial fluid, and microvascular images from multi‐b‐value diffusion MRI data by using a physics‐informed neural network (PINN) fitting approach.MethodsTest–retest whole‐brain inversion recovery diffusion‐weighted images with multiple b‐values (IVIM: intravoxel incoherent motion) were acquired on separate days for 16 patients with cerebrovascular disease on a 3.0T MRI system. The performance of the PINN three‐component IVIM (3C‐IVIM) model fitting approach was compared with conventional fitting approaches (i.e., non‐negative least squares and two‐step least squares) in terms of (1) parameter map quality, (2) test–retest repeatability, and (3) voxel‐wise accuracy. Using the in vivo data, the parameter map quality was assessed by the parameter contrast‐to‐noise ratio (PCNR) between normal‐appearing white matter and white matter hyperintensities, and test–retest repeatability was expressed by the coefficient of variation (CV) and intraclass correlation coefficient (ICC). The voxel‐wise accuracy of the 3C‐IVIM parameters was determined by 10,000 computer simulations mimicking our in vivo data. Differences in PCNR and CV values obtained with the PINN approach versus conventional fitting approaches were assessed using paired Wilcoxon signed‐rank tests.ResultsThe PINN‐derived 3C‐IVIM parameter maps were of higher quality and more repeatable than those of conventional fitting approaches, while also achieving higher voxel‐wise accuracy.ConclusionPhysics‐informed neural networks enable robust voxel‐wise estimation of three diffusion components from the diffusion‐weighted signal. The repeatable and high‐quality biological parameter maps generated with PINNs allow for visual evaluation of pathophysiological processes in cerebrovascular disease.

Funder

H2020 European Institute of Innovation and Technology

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3