A new synthesis method for complex electric field patterning using a multichannel dense array system with applications in low‐intensity noninvasive neuromodulation

Author:

Smith Matthew C.1ORCID,Sievenpiper Daniel F.1

Affiliation:

1. Department of Electrical and Computer Engineering University of California San Diego La Jolla California USA

Abstract

AbstractMultichannel coil array systems offer precise spatiotemporal electronic steering and patterning of electric and magnetic fields without the physical movement of coils or magnets. This capability could potentially benefit a wide range of biomagnetic applications such as low‐intensity noninvasive neuromodulation or magnetic drug delivery. In this regard, the objective of this work is to develop a unique synthesis method, that enabled by a multichannel dense array system, generates complex current pattern distributions not previously reported in the literature. Simulations and experimental results verify that highly curved or irregular (e.g., zig–zag) patterns at singular and multiple sites can be efficiently formed using this method. The synthesis method is composed of three primary components; a pixel cell (basic unit of pattern formation), a template array (“virtual array”: code that disseminates the coil current weights to the “physical” dense array), and a hexagonal coordinate system. Low‐intensity or low‐field magnetic stimulation is identified as a potential application that could benefit from this work in the future and as such is used as an example to frame the research.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Physiology,General Medicine,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3