Affiliation:
1. Ming Hsieh Department of Electrical and Computer Engineering Viterbi School of Engineering, University of Southern California Los Angeles California USA
Abstract
AbstractPurposeTo demonstrate speech‐production real‐time MRI (RT‐MRI) using a contemporary 0.55T system, and to identify opportunities for improved performance compared with conventional field strengths.MethodsExperiments were performed on healthy adult volunteers using a 0.55T MRI system with high‐performance gradients and a custom 8‐channel upper airway coil. Imaging was performed using spiral‐based balanced SSFP and gradient‐recalled echo (GRE) pulse sequences using a temporal finite‐difference constrained reconstruction. Speech‐production RT‐MRI was performed with three spiral readout durations (8.90, 5.58, and 3.48 ms) to determine trade‐offs with respect to articulator contrast, blurring, banding artifacts, and overall image quality.ResultsBoth spiral GRE and bSSFP captured tongue boundary dynamics during rapid consonant‐vowel syllables. Although bSSFP provided substantially higher SNR in all vocal tract articulators than GRE, it suffered from banding artifacts at TR > 10.9 ms. Spiral bSSFP with the shortest readout duration (3.48 ms, TR = 5.30 ms) had the best image quality, with a 1.54‐times boost in SNR compared with an equivalent GRE sequence. Longer readout durations led to increased SNR efficiency and blurring in both bSSFP and GRE.ConclusionHigh‐performance 0.55T MRI systems can be used for speech‐production RT‐MRI. Spiral bSSFP can be used without suffering from banding artifacts in vocal tract articulators, provide better SNR efficiency, and have better image quality than what is typically achieved at 1.5 T or 3 T.
Funder
National Science Foundation of Sri Lanka
Subject
Radiology, Nuclear Medicine and imaging
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献