A Stapled Peptide Inhibitor Targeting the Binding Interface of N6‐Adenosine‐Methyltransferase Subunits METTL3 and METTL14 for Cancer Therapy

Author:

Li Zenghui12ORCID,Feng Yuqing13,Han Hong12,Jiang Xingyue12,Chen Weiyu12,Ma Xuezhen1,Mei Yang1,Yuan Dan12,Zhang Dingxiao13,Shi Junfeng123ORCID

Affiliation:

1. Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences Hunan University Changsha Hunan 410082 China

2. Greater Bay Area Institute for Innovation Institution Guangzhou 511300, Guangdong Province China

3. Shenzhen Research Institute Hunan University Shenzhen 518000, Guangdong Province China

Abstract

AbstractMETTL3, a primary methyltransferase catalyzing the RNA N6‐methyladenosine (m6A) modification, has been identified as an oncogene in several cancer types and thus nominated as a potentially effective target for therapeutic inhibition. However, current options using this strategy are limited. In this study, we targeted protein–protein interactions at the METTL3–METTL14 binding interface to inhibit complex formation and subsequent catalysis of the RNA m6A modification. Among candidate peptides, RM3 exhibited the highest anti‐cancer potency, inhibiting METTL3 activity while also facilitating its proteasomal degradation. We then designed a stapled peptide inhibitor (RSM3) with enhanced peptide stability and formation of the α‐helical secondary structure required for METTL3 interaction. Functional and transcriptomic analysis in vivo indicated that RSM3 induced upregulation of programmed cell death‐related genes while inhibiting cancer‐promoting signals. Furthermore, tumor growth was significantly suppressed while apoptosis was enhanced upon RSM3 treatment, accompanied by increased METTL3 degradation, and reduced global RNA methylation levels in two in vivo tumor models. This peptide inhibitor thus exploits a mechanism distinct from other small‐molecule competitive inhibitors to inhibit oncogenic METTL3 activity. Our findings collectively highlight the potential of targeting METTL3 in cancer therapies through peptide‐based inhibition of complex formation and proteolytic degradation.

Funder

National Natural Science Foundation of China

Science Fund for Distinguished Young Scholars of Hunan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3