Transition Metal‐Free Catalytic C−H Zincation and Alumination

Author:

Kumar Bisai Milan1ORCID,Łosiewicz Justyna1,Sotorrios Lia2ORCID,Nichol Gary S.1ORCID,Dominey Andrew P.3,Cowley Michael J.1ORCID,Thomas Stephen P.1ORCID,Macgregor Stuart A.4ORCID,Ingleson Michael J.1ORCID

Affiliation:

1. EaStCHEM School of Chemistry University of Edinburgh Edinburgh EH9 3FJ United Kingdom

2. School of Health Sciences University of Manchester Manchester M13 9PT United Kingdom

3. GSK Medicines Research Centre Gunnels Wood Road Stevenage, Hertfordshire SG1 2NY United Kingdom

4. EaStCHEM School of Chemistry University of St Andrews St. Andrews KY16 9ST United Kingdom

Abstract

AbstractC−H metalation is the most efficient method to prepare aryl–zinc and –aluminium complexes that are ubiquitous nucleophiles. Virtually all C−H metalation routes to form Al/Zn organometallics require stoichiometric, strong Brønsted bases with no base‐catalyzed reactions reported. Herein we present a catalytic in amine/ammonium salt (Et3N/[(Et3N)H]+) C−H metalation process to form aryl‐zinc and aryl‐aluminium complexes. Key to this approach is coupling an endergonic C−H metalation step with a sufficiently exergonic dehydrocoupling step between the ammonium salt by‐product of C−H metalation ([(Et3N)H]+) and a Zn−H or Al−Me containing complex. This step, forming H2/MeH, makes the overall cycle exergonic while generating more of the reactive metal electrophile. Mechanistic studies supported by DFT calculations revealed metal‐specific dehydrocoupling pathways, with the divergent reactivity due to the different metal valency (which impacts the accessibility of amine‐free cationic metal complexes) and steric environment. Notably, dehydrocoupling in the zinc system proceeds through a ligand‐mediated pathway involving protonation of the β‐diketiminate Cγ position. Given this process is applicable to two disparate metals (Zn and Al), other main group metals and ligand sets are expected to be amenable to this transition metal‐free, catalytic C−H metalation.

Funder

Engineering and Physical Sciences Research Council

H2020 European Research Council

University of Edinburgh

Publisher

Wiley

Reference81 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3