Exploring the Impact of Active Site Structure on the Conversion of Methane to Methanol in Cu‐Exchanged Zeolites

Author:

Göltl Florian12ORCID,Bhandari Saurabh2,Lebrón‐Rodríguez Edgard A.2,Gold Jake I.2,Hutton Daniel J.1,Zones Stacey I.3,Hermans Ive24,Dumesic James A.2,Mavrikakis Manos2

Affiliation:

1. The University of Arizona Department of Biosystems Engineering 1177, E 4th St. 85719 Tucson AZ United States

2. The University of Wisconsin – Madison Department of Chemical and Biological Engineering 1415 Engineering Drive 53706 Madison WI United States

3. Chevron Energy Technology Company Richmond CA 94804 United States

4. The University of Wisconsin – Madison Department of Chemistry 1101 University Avenue 53706 Madison WI United States

Abstract

AbstractIn the past, Cu‐oxo or ‐hydroxy clusters hosted in zeolites have been suggested to enable the selective conversion of methane to methanol, but the impact of the active site's stoichiometry and structure on methanol production is still poorly understood. Herein, we apply theoretical modeling in conjunction with experiments to study the impact of these two factors on partial methane oxidation in the Cu‐exchanged zeolite SSZ‐13. Phase diagrams developed from first‐principles suggest that Cu‐hydroxy or Cu‐oxo dimers are stabilized when O2 or N2O are used to activate the catalyst, respectively. We confirm these predictions experimentally and determine that in a stepwise conversion process, Cu‐oxo dimers can convert twice as much methane to methanol compared to Cu‐hydroxyl dimers. Our theoretical models rationalize how Cu‐di‐oxo dimers can convert up to two methane molecules to methanol, while Cu‐di‐hydroxyl dimers can convert only one methane molecule to methanol per catalytic cycle. These findings imply that in Cu clusters, at least one oxo group or two hydroxyl groups are needed to convert one methane molecule to methanol per cycle. This simple structure–activity relationship allows to intuitively understand the potential of small oxygenated or hydroxylated transition metal clusters to convert methane to methanol.

Funder

Directorate for Mathematical and Physical Sciences

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3