Simultane Funktionalisierung von Einwandigen Kohlenstoff‐Nanoröhren von Innen und Außen

Author:

Kraus Jan1,Meingast Laura2,Hald Janina1,Beil Sebastian B.1,Biskupek Johannes3,Ritterhoff Christian L.4,Gsänger Sebastian4,Eisenkolb Jasmin5,Meyer Bernd4ORCID,Kaiser Ute3,Maultzsch Janina2ORCID,von Delius Max1ORCID

Affiliation:

1. Institute of Organic Chemistry Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany

2. Department of Physics Friedrich-Alexander-Universität Erlangen-Nürnberg Staudtstraße 7 91058 Erlangen Germany

3. Central Facility of Electron Microscopy Electron Microscopy Group of Materials Science Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany

4. Interdisciplinary Center for Molecular Materials (ICMM) and Computer Chemistry Center (CCC) Friedrich-Alexander-Universität Erlangen-Nürnberg Nägelsbachstraße 25 91052 Erlangen Germany

5. Department of Chemistry and Pharmacy and Center of Advanced Materials and Processes (ZMP) Friedrich-Alexander-Universität Erlangen-Nürnberg Dr.-Mack-Str. 81 90762 Fürth Germany

Abstract

AbstractDie Funktionalisierung einwandiger Kohlenstoff‐Nanoröhren (SWCNTs) auf eine robuste Weise, die das sp2 Kohlenstoffgerüst nicht beeinträchtigt ist in der aktuellen Forschung eine große Herausforderung. Hier beschreiben wir, wie Triiodidsalze von positiv geladenen Makrozyklen verwendet werden können, um SWCNTs nicht nur von außen, sondern auch gleichzeitig von innen zu funktionalisieren. Wir setzten den Disulfidaustausch in wässrigem Lösungsmittel ein, um den solvophoben Effekt zu maximieren und so einen hohen Grad an Makrozyklus Immobilisierung zu erreichen. Die Charakterisierung mittels Raman‐Spektroskopie, EDX‐STEM und HR‐TEM zeigte deutlich, dass dieses nasschemische Funktionalisierungsprotokoll auch zur Verkapselung von Polyiodidketten im Inneren der Nanoröhren führte. Die resultierenden dreischaligen Kompositmaterialien sind redoxaktiv und weisen ein faszinierendes Zusammenspiel von elektrostatischen, solvophoben und mechanischen Effekten auf, was für Anwendungen in der Energiespeicherung von Interesse sein könnte.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3