Boosting CO2 Photoreduction to Formate or CO with High Selectivity over a Covalent Organic Framework Covalently Anchored on Graphene Oxide

Author:

Gong Yun‐Nan1,Mei Jian‐Hua1,Shi Wen‐Jie1,Liu Jin‐Wang1,Zhong Di‐Chang1ORCID,Lu Tong‐Bu1

Affiliation:

1. MOE International Joint Laboratory of Materials Microstructure Institute for New Energy Materials and Low Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology 300384 Tianjin China

Abstract

AbstractCovalent organic frameworks (COFs) have been widely studied in photocatalytic CO2 reduction reaction (CO2RR). However, pristine COFs usually exhibit low catalytic efficiency owing to the fast recombination of photogenerated electrons and holes. In this study, we fabricated a stable COF‐based composite (GO‐COF‐366‐Co) by covalently anchoring COF‐366‐Co on the surface of graphene oxide (GO) for the photocatalytic CO2 reduction. Interestingly, in absolute acetonitrile (CH3CN), GO‐COF‐366‐Co shows a high selectivity of 94.4 % for the photoreduction of CO2 to formate, with a formate yield of 15.8 mmol/g, which is approximately four times higher than that using the pristine COF‐366‐Co. By contrast, in CH3CN/H2O (v : v=4 : 1), the main product for the photocatalytic CO2 reduction over GO‐COF‐366‐Co is CO (96.1 %), with a CO yield as high as 52.2 mmol/g, which is also approximately four times higher than that using the pristine COF‐366‐Co. Photoelectrochemical experiments demonstrate the covalent bonding of COF‐366‐Co and GO to form the GO‐COF‐366‐Co composite facilitates charge separation and transfer significantly, thereby accounting for the enhanced catalytic activity. In addition, theoretical calculations and in situ Fourier transform infrared spectroscopy reveal H2O can stabilize the *COOH intermediate to further form a *CO intermediate via O−H(aq)⋅⋅⋅O(*COOH) hydrogen bonding, thus explaining the regulated photocatalytic performance.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3