Affiliation:
1. Research Center for Crystal Materials Xinjiang Technical Institute of Physics and Chemistry Chinese Academy of Sciences Urumqi 830011 P. R. China
2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
Abstract
AbstractBorate crystals can be chemically and functionally modified by the fluorination strategy, which encourages the identification of emerging fluorooxoborates with a structure and set of characteristics not seen in any other oxide parents. However, the bulk of fluorooxoborates have been found accidentally, rational methods of synthesis are required, particularly for the infrequently occurring poly‐fluorinated components. Herein, we reported the use of bifluoride salts as a potent source of fluorine to prepare fluorooxoborates that contain rarely tri‐fluorinated [BF3X] (X=O and CH3) tetrahedra and eleven compounds were found. We identified the optical properties of the organofluorinated group [CH3BF3] and their potential for nonlinear optics for the first time. Among these, two non‐centrosymmetric components hold potential for the production of 266 nm harmonic coherent light for nonlinear optics, and more crucially, have the benefit of growing large size single crystals. Our study establishes experimental conditions for the coexistence of the diverse functional groups, enabling the production of poly‐fluorinated optical crystals.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
West Light Foundation, Chinese Academy of Sciences
Natural Science Foundation of Xinjiang
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献