Unraveling the “Gap‐Filling” Mechanism of Multiple Charge Carriers in Aqueous Zn‐MoS2 Batteries

Author:

Li Shengwei1,Zhao Xudong2,Wang Tianhao1,Wu Jiae3,Xu Xinghe1,Li Ping1,Ji Xiaobo3ORCID,Hou Hongshuai3ORCID,Qu Xuanhui1ORCID,Jiao Lifang4ORCID,Liu Yongchang14ORCID

Affiliation:

1. Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology State Key Laboratory for Advanced Metals and Materials University of Science and Technology Beijing Beijing 100083 China

2. Tianjin Key Laboratory for Photoelectric Materials and Devices School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China

3. State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering Central South University Changsha 410083 China

4. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 China

Abstract

AbstractThe utilization rate of active sites in cathode materials for Zn‐based batteries is a key factor determining the reversible capacities. However, a long‐neglected issue of the strong electrostatic repulsions among divalent Zn2+ in hosts inevitably causes the squander of some active sites (i.e., gap sites). Herein, we address this conundrum by unraveling the “gap‐filling” mechanism of multiple charge carriers in aqueous Zn‐MoS2 batteries. The tailored MoS2/(reduced graphene quantum dots) hybrid features an ultra‐large interlayer spacing (2.34 nm), superior electrical conductivity/hydrophilicity, and robust layered structure, demonstrating highly reversible NH4+/Zn2+/H+ co‐insertion/extraction chemistry in the 1 M ZnSO4+0.5 M (NH4)2SO4 aqueous electrolyte. The NH4+ and H+ ions can act as gap fillers to fully utilize the active sites and screen electrostatic interactions to accelerate the Zn2+ diffusion. Thus, unprecedentedly high rate capability (439.5 and 104.3 mAh g−1 at 0.1 and 30 A g−1, respectively) and ultra‐long cycling life (8000 cycles) are achieved.

Funder

National Natural Science Foundation of China

National Program for Support of Top-notch Young Professionals

State Key Laboratory for Advanced Metals and Materials

Higher Education Discipline Innovation Project

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3