Affiliation:
1. Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100
2. School of Physics Shandong University Jinan 250100 China
3. Liaocheng University Liaocheng 252000 P. R. China
Abstract
AbstractThe catalytic process of Li2S formation is considered a key pathway to enhance the kinetics of lithium‐sulfur batteries. Due to the system‘s complexity, the catalytic behavior is uncertain, posing significant challenges for predicting activity. Herein, we report a novel cascaded dual‐cavity nanoreactor (NiCo−B) by controlling reaction kinetics, providing an opportunity for achieving hierarchical catalytic behavior. Through experimental and theoretical analysis, the multilevel structure can effectively suppress polysulfides dissolution and accelerate sulfur conversion. Furthermore, we differentiate the adsorption (B−S) and catalytic effect (Co−S) in NiCo−B, avoiding catalyst deactivation caused by excessive adsorption. As a result, the as‐prepared battery displays high reversible capacity, even with sulfur loading of 13.2 mg cm−2 (E/S=4 μl mg−1), the areal capacity can reach 18.7 mAh cm−2.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province