Affiliation:
1. College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
Abstract
AbstractCovalent organic frameworks (COFs) have gained significant attention as key photocatalysts for efficient solar light conversion into hydrogen production. Unfortunately, the harsh synthetic conditions and intricate growth process required to obtain highly crystalline COFs greatly hinder their practical application. Herein, we report a simple strategy for the efficient crystallization of 2D COFs based on the intermediate formation of hexagonal macrocycles. Mechanistic investigation suggests that the use of 2,4,6‐triformyl resorcinol (TFR) as the asymmetrical aldehyde build block allows the equilibration between irreversible enol‐to‐keto tautomerization and dynamic imine bonds to produce the hexagonal β‐ketoenamine‐linked macrocycles, the formation of which could provide COFs with high crystallinity in half hour. We show that COF‐935 with 3 wt % Pt as cocatalyst exhibit a high hydrogen evolution rate of 67.55 mmol g−1 h−1 for water splitting when exposed to visible light. More importantly, COF‐935 exhibits an average hydrogen evolution rate of 19.80 mmol g−1 h−1 even at a low loading of only 0.1 wt % Pt, which is a significant breakthrough in this field. This strategy would provide valuable insights into the design of highly crystalline COFs as efficient organic semiconductor photocatalysts.
Funder
National Natural Science Foundation of China
State Key Laboratory of Polymer Materials Engineering
Fundamental Research Funds for the Central Universities
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献