A Bioengineered Nanovesicle Vaccine Boosts T‐B cell Interaction for Immunotherapy of Echinococcus multilocularis

Author:

An Xiaoyu1234,Xiang Wei1,Liu Xue1,Li Shuo12,Xu Zhijian3,He Pan1,Ge Ri‐Li5,Tang Feng5,Cheng Zhe3,Liu Chao24,Liu Gang13ORCID

Affiliation:

1. State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine Xiang An Biomedicine Laboratory National Innovation Platform for Industry-Education Integration in Vaccine Research School of Public Health Xiamen University 4221 Xianganan Road, Xiang 'an District Xiamen Fujian China

2. State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research School of Pharmaceutical Sciences Xiamen University 4221 Xianganan Road, Xiang 'an District Xiamen Fujian China

3. State Key Laboratory of Cellular Stress Biology School of Life Sciences Xiamen University 4221 Xianganan Road, Xiang 'an District Xiamen Fujian China

4. Shenzhen Research Institute of Xiamen University Xiamen University R4-A600, Virtual University Park, 19 Gaoxin South Fourth Road, Nanshan District Shenzhen

5. Research Center for High Altitude Medicine Qinghai Provincial Research Key Laboratory for Hydatid Qinghai University 16 Kunlun Road Xining Qinghai China

Abstract

AbstractAlveolar echinococcosis (AE) is a zoonotic parasitic disease, resulting from being infected with the metacestode larvae of the tapeworm Echinococcus multilocularis (E. multilocularis). Novel prophylactic and therapeutic interventions are urgently needed since the current chemotherapy displays limited efficiency in AE treatment. Bioengineered nano cellular membrane vesicles are widely used for displaying the native conformational epitope peptides because of their unique structure and biocompatibility. In this study, four T‐cells and four B‐cells dominant epitope peptides of E. multilocularis with high immunogenicity were engineered into the Vero cell surface to construct a membrane vesicle nanovaccine for the treatment of AE. The results showed that the nanovesicle vaccine can efficiently activate dendritic cells, induce specific T/B cells to form a mutually activated circuit, and inhibit E. multilocularis infection. This study presents for the first time a nanovaccine strategy that can completely eliminate the burden of E. multilocularis.

Funder

National Natural Science Foundation of China

Major State Basic Research Development Program of China

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3