Template‐Oriented Polyaniline‐Supported Palladium Nanoclusters for Reductive Homocoupling of Furfural Derivatives

Author:

Guo Dongwen1,Jiang Kai1,Gan Hui1,Ren Yanwei1,Long Jinxing1ORCID,Li Yingwei1ORCID,Yin Biaolin1ORCID

Affiliation:

1. Key Laboratory of Functional Molecular Engineering of Guangdong Province State Key Laboratory of Pulp and Paper Engineering School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China

Abstract

AbstractDeveloping well‐defined structures and desired properties for porous organic polymer (POP) supported catalysts by controlling their composition, size, and morphology is of great significance. Herein, we report a preparation of polyaniline (PANI) supported Pd nanoparticles (NPs) with controllable structure and morphology. The protocol involves the introduction of MnO2 with different crystal structures (α, β, γ, δ, ϵ) serving as both the reaction template and the oxidant. The different forms of MnO2 each convert aniline to a PANI that contains a unique regular distribution of benzene and quinone. This leads to the Pd/PANI catalysts with different charge transfer properties between Pd and PANI, as well as different dispersions of the metal NPs. In this case, the Pd/ϵ‐PANI catalyst greatly improves the turnover frequency (TOF; to 88.3 h−1), in the reductive coupling of furfural derivatives to potential bio‐based plasticizers. Systematic characterizations reveal the unique oxidation state of the support in the Pd/ϵ‐PANI catalyst and coordination mode of Pd that drives the formation of highly dispersed Pd nanoclusters. Density functional theory (DFT) calculations show the more electron rich Pd/PANI catalyst has the lower energy barrier in the oxidative addition step, which favors the C−C coupling reaction.

Publisher

Wiley

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3