Affiliation:
1. China-Australia Joint Research Center for Functional Molecular Materials School of Materials Science and Engineering Ocean University of China Qingdao 266404 China
2. State Key Laboratory of Metastable Materials Science and Technology Hebei Key Laboratory of Applied Chemistry Yanshan University Qinhuangdao 066004 China
3. School of Chemical Science and Engineering Tongji University Shanghai 200092 China
4. Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
5. Research School of Chemistry Australian National University Canberra ACT 2601 Australia
Abstract
AbstractConsiderable effort has been invested in the development of non‐centrosymmetric (NCS) inorganic solids for ferroelectricity‐, piezoelectricity‐ and, particularly, optical nonlinearity‐related applications. While great progress has been made, a persistent problem is the difficulty in constructing NCS materials, which probably stems from non‐directionality and unsaturation of the ionic bonds between metal counter‐cations and covalent anionic modules. We report herein a secondary‐bond‐driven approach that circumvents the cancellation of dipole moments between adjacent anionic modules that has plagued second‐harmonic generation (SHG) material design, and which thereby affords a polar structure with strong SHG properties. The resultant first NCS counter‐cation‐free iodate, VO2(H2O)(IO3) (VIO), a new class of iodate, crystallizes in a polar lattice with
VO2(H2O)(IO3)] zigzag chains connected by weak hydrogen bonds and intermolecular forces. VIO exhibits very large SHG responses (18 × KH2PO4 @ 1200 nm, 1.5 × KTiOPO4 @ 2100 nm) and sufficient birefringence (0.184 @ 546 nm). Calculations and crystal structure analysis attribute the large SHG responses to consistent polarization orientations of the
VO2(H2O)(IO3)] chains controlled by secondary bonds. This study highlights the advantages of manipulating the secondary bonds in inorganic solids to control NCS structure and optical nonlinearity, affording a new perspective in the development of high‐performance NLO materials.
Funder
National Natural Science Foundation of China
Australian Research Council