Impact of the Core Chemistry of Self‐Assembled Spherical Nucleic Acids on their In Vitro Fate

Author:

Faiad Sinan1,Laurent Quentin1ORCID,Prinzen Alexander L.1,Asohan Jathavan1,Saliba Daniel1,Toader Violeta1,Sleiman Hanadi F.1ORCID

Affiliation:

1. Department of Chemistry McGill University 801 Sherbrooke St West H3A 0B8 Montreal Québec Canada

Abstract

AbstractNucleic acid therapeutics (NATs), such as mRNA, small interfering RNA or antisense oligonucleotides are extremely efficient tools to modulate gene expression and tackle otherwise undruggable diseases. Spherical nucleic acids (SNAs) can efficiently deliver small NATs to cells while protecting their payload from nucleases, and have improved biodistribution and muted immune activation. Self‐assembled SNAs have emerged as nanostructures made from a single DNA‐polymer conjugate with similar favorable properties as well as small molecule encapsulation. However, because they maintain their structure by non‐covalent interactions, they might suffer from disassembly in biologically relevant conditions, especially with regard to their interaction with serum proteins. Here, we report a systematic study of the factors that govern the fate of self‐assembled SNAs. Varying the core chemistry and using stimuli‐responsive disulfide crosslinking, we show that extracellular stability upon binding with serum proteins is important for recognition by membrane receptors, triggering cellular uptake. At the same time, intracellular dissociation is required for efficient therapeutic release. Disulfide‐crosslinked SNAs combine these two properties and result in efficient and non‐toxic unaided gene silencing therapeutics. We anticipate these investigations will help the translation of promising self‐assembled structures towards in vivo gene silencing applications.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

Fonds de recherche du Québec – Nature et technologies

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3