Cobalt‐Porphyrin‐Based Covalent Organic Frameworks with Donor‐Acceptor Units as Photocatalysts for Carbon Dioxide Reduction

Author:

Kim Young Hyun1,Jeon Jong‐Pil1,Kim Yongchul2,Noh Hyuk‐Jun1,Seo Jeong‐Min1,Kim Jiwon1,Lee Geunsik2,Baek Jong‐Beom1ORCID

Affiliation:

1. School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 Republic of Korea

2. Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 Republic of Korea

Abstract

AbstractCovalent organic frameworks (COFs) have emerged as a promising platform for photocatalysts. Their crystalline porous nature allows comprehensive mechanistic studies of photocatalysis, which have revealed that their general photophysical parameters, such as light absorption ability, electronic band structure, and charge separation efficiency, can be conveniently tailored by structural modifications. However, further understanding of the relationship between structure‐property‐activity is required from the viewpoint of charge‐carrier transport, because the charge‐carrier property is closely related to alleviation of the excitonic effect. In the present study, COFs composed of a fixed cobalt (Co) porphyrin (Por) centered tetraamine as an acceptor unit with differently conjugated di‐carbaldehyde based donor units, such as benzodithiophene (BDT), thienothiophene (TT), or phenyl (TA), were synthesized to form Co‐Por‐BDT, Co‐Por‐TT, or Co‐Por‐TA, respectively. Their photocatalytic activity for reducing carbon dioxide into carbon monoxide was in the order of Co‐Por‐BDT>Co‐Por‐TT>Co‐Por‐TA. The results indicated that the excitonic effect, associated with their charge‐carrier densities and π‐conjugation lengths, was a significant factor in photocatalysis performance.

Funder

National Research Foundation of Korea

Ulsan National Institute of Science and Technology

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3