Dynamic Covalent Self‐sorting in Molecular and Polymeric Architectures Enabled by Spiroborate Bond Exchange

Author:

Xu Qiucheng1,Wang Xubo1,Huang Shaofeng1,Hu Yiming1,Teat Simon J.2,Settineri Nicholas S.2,Chen Hongxuan1,Wayment Lacey J.1,Jin Yinghua1,Sharma Sandeep1,Zhang Wei1ORCID

Affiliation:

1. Department of Chemistry University of Colorado Boulder Boulder CO 80309 USA

2. Advanced Light Source, Lawrence Berkeley National Laboratory, Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA

Abstract

AbstractSelf‐sorting is commonly observed in complex reaction systems, which has been utilized to guide the formation of single major by‐design molecules. However, most studies have been focused on non‐covalent systems, and using self‐sorting to achieve covalently bonded architectures is still relatively less explored. Herein, we first demonstrated the dynamic nature of spiroborate linkage and systematically studied the self‐sorting behavior observed in the transformation between spiroborate‐linked well‐defined polymeric and molecular architectures, which is enabled by spiroborate bond exchange. The scrambling between a macrocycle and a 1D helical covalent polymer led to the formation of a molecular cage, whose structures are all unambiguously elucidated by single‐crystal X‐ray diffraction. The results indicate that the molecular cage is the thermodynamically favored product in this multi‐component reaction system. This work represents the first example of a 1D polymeric architecture transforming into a shape‐persistent molecular cage, driven by dynamic covalent self‐sorting. This study will further guide the design of spiroborate‐based materials and open the possibilities for the development of novel complex yet responsive dynamic covalent molecular or polymeric systems.

Funder

Division of Chemistry

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3