Affiliation:
1. Technische Universität München School of Natural Sciences, Department of Chemistry and Catalysis Research Center Lichtenbergstrasse 4 85747 Garching Germany
Abstract
AbstractRacemic 3‐substituted oxindoles were successfully converted into enantiomerically pure or enriched material (up to 99 % ee) upon irradiation at λ=366 nm in the presence of a chiral benzophenone catalyst (10 mol %). The photochemical deracemization process allows predictable editing of the stereogenic center at carbon atom C3. Light energy compensates for the associated loss of entropy and enables the decoupling of potentially reversible reactions, i.e. a hydrogen atom transfer to (photochemical) and from (thermal) the carbonyl group of the catalyst. The major enantiomer is continuously enriched in several catalytic cycles. The obtained oxindoles were shown to be valuable intermediates for further transformations, which proceeded with complete retention at the stereogenic center.
Funder
Deutsche Forschungsgemeinschaft
Fonds der Chemischen Industrie
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献