Phosphine‐Triggered Structural Defects in Au44 Homologues Boost Electrocatalytic CO2 Reduction

Author:

Zhuang Shengli12,Chen Dong3,Ng Wai‐Pan14,Liu Li‐Juan1,Sun Meng‐Ying1,Liu Dongyi1,Nawaz Tehseen1,Xia Qi1,Wu Xia1,Huang Yong‐Liang5,Lee Seungkyu1,Yang Jun14ORCID,Yang Jun3ORCID,He Jian12ORCID

Affiliation:

1. Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China

2. State Key Laboratory of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China

3. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China

4. Hong Kong Quantum AI Lab Limited Hong Kong P. R. China

5. Department of Medicinal Chemistry Shantou University Medical College Shantou, Guangdong 515041 P. R. China

Abstract

AbstractThe systematic induction of structural defects at the atomic level is crucial to metal nanocluster research because it endows cluster‐based catalysts with highly reactive centers and allows for a comprehensive investigation of viable reaction pathways. Herein, by substituting neutral phosphine ligands for surface anionic thiolate ligands, we establish that one or two Au3 triangular units can be successfully introduced into the double‐stranded helical kernel of Au44(TBBT)28, where TBBT=4‐tert‐butylbenzenethiolate, resulting in the formation of two atomically precise defective Au44 nanoclusters. Along with the regular face‐centered‐cubic (fcc) nanocluster, the first series of mixed‐ligand cluster homologues is identified, with a unified formula of Au44(PPh3)n(TBBT)28−2n (n=0–2). The Au44(PPh3)(TBBT)26 nanocluster having major structural defects at the bottom of the fcc lattice demonstrates superior electrocatalytic performance in the CO2 reduction to CO. Density functional theory calculations indicate that the active site near the defects significantly lowers the free energy for the *COOH formation, the rate‐determining step in the whole catalytic process.

Funder

Research Grants Council, University Grants Committee

National Natural Science Foundation of China

Croucher Foundation

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3