Enhancement of Low Temperature Superionic Conductivity by Suppression of Li Site Ordering in Li7Si2–xGexS7I

Author:

Han Guopeng1ORCID,Daniels Luke M.1ORCID,Vasylenko Andrij1ORCID,Morrison Kate A.1,Corti Lucia12ORCID,Collins Chris M.12ORCID,Niu Hongjun1,Chen Ruiyong1ORCID,Roberston Craig M.1,Blanc Frédéric123ORCID,Dyer Matthew S.12ORCID,Claridge John B.12ORCID,Rosseinsky Matthew J.12ORCID

Affiliation:

1. Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD United Kingdom

2. Leverhulme Research Centre for Functional Materials Design Materials Innovation Factory University of Liverpool 51 Oxford Street Liverpool L7 3NY United Kingdom

3. Stephenson Institute for Renewable Energy University of Liverpool Peach Street Liverpool L69 7ZF United Kingdom

Abstract

AbstractGe4+ substitution into the recently discovered superionic conductor Li7Si2S7I is demonstrated by synthesis of Li7Si2–xGexS7I, where x≤1.2. The anion packing and tetrahedral silicon location of Li7Si2S7I are retained upon substitution. Single crystal X‐ray diffraction shows that substitution of larger Ge4+ for Si4+ expands the unit cell volume and further increases Li+ site disorder, such that Li7Si0.88Ge1.12S7I has one Li+ site more (sixteen in total) than Li7Si2S7I. The ionic conductivity of Li7Si0.8Ge1.2S7I (x=1.2) at 303 K is 1.02(3)×10−2 S cm−1 with low activation energies for Li+ transport demonstrated over a wide temperature range by AC impedance and 7Li NMR spectroscopy. All sixteen Li+ sites remain occupied to temperatures as low as 30 K in Li7Si0.88Ge1.12S7I as a result of the structural expansion. This differs from Li7Si2S7I, where the partial Li+ site ordering observed below room temperature reduces the ionic conductivity. The suppression of Li+ site depopulation by Ge4+ substitution retains the high mobility to temperatures as low as 200 K, yielding low temperature performance comparable with state‐of‐the‐art Li+ ion conducting materials.

Funder

Engineering and Physical Sciences Research Council

Leverhulme Research Centre for Functional Materials Design

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3