Bio‐inspired Two‐dimensional Nanofluidic Ionic Transistor for Neuromorphic Signal Processing

Author:

Mei Tingting12,Liu Wenchao1,Sun Fusai3,Chen Yuanxia1,Xu Guoheng1,Huang Zijia1,Jiang Yisha1,Wang Senyao1,Chen Lu2,Liu Junjun2,Fan Fengtao3,Xiao Kai1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Advanced Biomaterials Department of Biomedical Engineering Institute of Innovative Materials Southern University of Science and Technology Shenzhen 518055 P.R. China

2. School of Materials and Environmental Engineering Shenzhen Polytechnic University Shenzhen 518055 PR China

3. State Key Laboratory of Catalysis 2011-iChEM Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physic Zhongshan Road 457 Dalian 116023 P.R. China

Abstract

AbstractVoltage‐gated ion channels prevalent in neurons play important roles in generating action potential and information transmission by responding to transmembrane potential. Fabricating bio‐inspired ionic transistors with ions as charge carriers will be crucial for realizing neuro‐inspired devices and brain‐liking computing. Here, we reported a two‐dimensional nanofluidic ionic transistor based on a MXene membrane with sub‐1 nm interlayer channels. By applying a gating voltage on the MXene nanofluidic, a transmembrane potential will be generated to active the ionic transistor, which is similar to the transmembrane potential of neuron cells and can be effectively regulated by changing membrane parameters, e.g., thickness, composition, and interlayer spacing. For the symmetric MXene nanofluidic, a high on/off ratio of ~2000 can be achieved by forming an ionic depletion or accumulation zone, contingent on the sign of the gating potential. An asymmetric PET/MXene‐composited nanofluidic transitioned the ionic transistor from ambipolar to unipolar, resulting in a more sensitive gate voltage characteristic with a low subthreshold swing of 560 mV/decade. Furthermore, ionic logic gate circuits, including the “NOT”, “NAND”, and “NOR” gate, were implemented for neuromorphic signal processing successfully, which provides a promising pathway towards highly parallel, low energy consumption, and ion‐based brain‐like computing.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference47 articles.

1. Nanofluidic computing makes a splash

2.  

3. M. F. Bear B. W. Connors M. A. Paradiso Neuroscience: Exploring the brain 3rd ed. ed. Lippincott Williams & Wilkins Publishers Philadelphia PA US 2007;

4. Presynaptic calcium channels: specialized control of synaptic neurotransmitter release

5.  

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3