Out‐of‐Plane Single‐Copper‐Site Catalysts for Room‐Temperature Benzene Oxidation

Author:

Che Wei1,Li Pai2,Han Gao‐Feng1,Noh Hyuk‐Jun1,Seo Jeong‐Min1,Jeon Jong‐Pil1,Li Changqing1,Liu Wei3,Li Feng4,Liu Qinghua5,Baek Jong‐Beom1ORCID

Affiliation:

1. School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea

2. State Key Laboratory of Integrated Circuit Materials Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 P. R. China

3. State Key Laboratory of Fine Chemicals Frontier Science Center for Smart Materials Department of Chemistry School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China

4. Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 P. R. China

5. National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 Anhui P. R. China

Abstract

AbstractCrafting single‐atom catalysts (SACs) that possess “just right” modulated electronic and geometric structures, granting accessible active sites for direct room‐temperature benzene oxidation is a coveted objective. However, achieving this goal remains a formidable challenge. Here, we introduce an innovative in situ phosphorus‐immitting strategy using a new phosphorus source (phosphorus nitride, P3N5) to construct the phosphorus‐rich copper (Cu) SACs, designated as Cu/NPC. These catalysts feature locally protruding metal sites on a nitrogen (N)‐phosphorus (P)‐carbon (C) support (NPC). Rigorous analyses, including X‐ray absorption spectroscopy (XAS) and X‐ray photoelectron spectroscopy (XPS), validate the coordinated bonding of nitrogen and phosphorus with atomically dispersed Cu sites on NPC. Crucially, systematic first‐principles calculations, coupled with the climbing image nudged‐elastic‐band (CI‐NEB) method, provide a comprehensive understanding of the structure‐property‐activity relationship of the distorted Cu−N2P2 centers in Cu/NPC for selective oxidation of benzene to phenol production. Interestingly, Cu/NPC has shown more energetically favorable C−H bond activation compared to the benchmark Cu/NC SACs in the direct oxidation of benzene, resulting in outstanding benzene conversion (50.3 %) and phenol selectivity (99.3 %) at room temperature. Furthermore, Cu/NPC achieves a remarkable turnover frequency of 263 h−1 and mass‐specific activity of 35.2 mmol g−1 h−1, surpassing the state‐of‐the‐art benzene‐to‐phenol conversion catalysts to date.

Funder

National Research Foundation of Korea

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3