Isostructural Nanocluster Manipulation Reveals Pivotal Role of One Surface Atom in Click Chemistry

Author:

Dong Chunwei1ORCID,Huang Ren‐Wu1,Sagadevan Arunachalam1ORCID,Yuan Peng1,Gutiérrez‐Arzaluz Luis2,Ghosh Atanu1,Nematulloev Saidkhodzha1,Alamer Badriah1,Mohammed Omar F.2,Hussain Irshad3,Rueping Magnus1,Bakr Osman M.1ORCID

Affiliation:

1. KAUST Catalysis Center (KCC) Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Saudi Arabia

2. Advanced Membranes and Porous Materials Center (AMPMC) KAUST Catalysis Center (KCC) Physical Sciences and Engineering Division King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Saudi Arabia

3. Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS), DHA 54792 Lahore Pakistan

Abstract

AbstractElucidating single‐atom effects on the fundamental properties of nanoparticles is challenging because single‐atom modifications are typically accompanied by appreciable changes to the overall particle's structure. Herein, we report the synthesis of a [Cu58H20PET36(PPh3)4]2+ (Cu58; PET: phenylethanethiolate; PPh3: triphenylphosphine) nanocluster—an atomically precise nanoparticle—that can be transformed into the surface‐defective analog [Cu57H20PET36(PPh3)4]+ (Cu57). Both nanoclusters are virtually identical, with five concentric metal shells, save for one missing surface copper atom in Cu57. Remarkably, the loss of this single surface atom drastically alters the reactivity of the nanocluster. In contrast to Cu58, Cu57 shows promising activity for click chemistry, particularly photoinduced [3+2] azide‐alkyne cycloaddition (AAC), which is attributed to the active catalytic site in Cu57 after the removal of one surface copper atom. Our study not only presents a unique system for uncovering the effect of a single‐surface atom modification on nanoparticle properties but also showcases single‐atom surface modification as a powerful means for designing nanoparticle catalysts.

Funder

King Abdullah University of Science and Technology

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3