In‐Situ Ultrafast Construction of Zinc Tungstate Interface Layer for Highly Reversible Zinc Anodes

Author:

Cao Jin12,Wu Haiyang2,Zhang Dongdong3,Luo Ding2,Zhang Lulu2,Yang Xuelin2,Qin Jiaqian4,He Guanjie5ORCID

Affiliation:

1. College of Hydraulic & Environmental Engineering China Three Gorges University Yichang, Hubei 443002 China

2. Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, College of Electrical Engineering & New Energy China Three Gorges University Yichang 443002, Hubei China

3. School of Materials Science and Engineering Shenyang University of Technology Shenyang 110870 China

4. Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute Chulalongkorn University Bangkok 10330 Thailand

5. Electrochemical Innovation Lab, Department of Chemical Engineering University College London Torrington Place London WC1E 7JE UK

Abstract

AbstractConstructing artificial solid electrolyte interface on the Zn anode surface is recognized as an appealing method to inhibit zinc dendrites and side reactions, whereas the current techniques are complex and time‐consuming. Here, a robust and zincophilic zinc tungstate (ZnWO4) layer has been in situ constructed on the Zn anode surface (denoted as ZWO@Zn) by an ultrafast chemical solution reaction. Comprehensive characterizations and theoretical calculations demonstrate that the ZWO layer can effectively modulate the interfacial electric field distribution and promote the Zn2+ uniform diffusion, thus facilitating the uniform Zn2+ nucleation and suppressing zinc dendrites. Besides, ZWO layer can prevent direct contact between the Zn/water and increase the hydrogen evolution reaction overpotential to eliminate side reactions. Consequently, the in situ constructed ZWO layer facilitates remarkable reversibility in the ZWO@Zn||Ti battery, achieving an impressive Coulombic efficiency of 99.36 % under 1.0 mA cm−2, unprecedented cycling lifespan exceeding 1800 h under 1.0 mA cm−2 in ZWO@Zn||ZWO@Zn battery, and a steady and reliable operation of the overall ZWO@Zn||VS2 battery. The work provides a simple, low cost, and ultrafast pathway to crafting protective layers for driving advancements in aqueous zinc‐metal batteries.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Engineering and Physical Sciences Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3