Unlocking Four‐electron Conversion in Tellurium Cathodes for Advanced Magnesium‐based Dual‐ion Batteries

Author:

Morag Ahiud12,Chu Xingyuan1,Marczewski Maciej3,Kunigkeit Jonas4,Neumann Christof5,Sabaghi Davood1,Żukowska Grażyna Zofia3,Du Jingwei1,Li Xiaodong12,Turchanin Andrey5,Brunner Eike4,Feng Xinliang12ORCID,Yu Minghao1ORCID

Affiliation:

1. Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany

2. Department of Synthetic Materials and Functional Devices Max-Planck Institute of Microstructure Physics 06120 Halle Germany

3. Faculty of Chemistry Warsaw University of Technology Ul. Noakowskiego 3 00-664 Warsaw Poland

4. Chair of Bioanalytical Chemistry Technische Universität Dresden 01062 Dresden Germany

5. Institute of Physical Chemistry and Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Lessingstrasse 10 07743 Jena Germany

Abstract

AbstractMagnesium (Mg) batteries hold promise as a large‐scale energy storage solution, but their progress has been hindered by the lack of high‐performance cathodes. Here, we address this challenge by unlocking the reversible four‐electron Te0/Te4+ conversion in elemental Te, enabling the demonstration of superior Mg//Te dual‐ion batteries. Specifically, the classic magnesium aluminum chloride complex (MACC) electrolyte is tailored by introducing Mg bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2), which initiates the Te0/Te4+ conversion with two distinct charge‐storage steps. Te cathode undergoes Te/TeCl4 conversion involving Cl as charge carriers, during which a tellurium subchloride phase is presented as an intermediate. Significantly, the Te cathode achieves a high specific capacity of 543 mAh gTe−1 and an outstanding energy density of 850 Wh kgTe−1, outperforming most of the previously reported cathodes. Our electrolyte analysis indicates that the addition of Mg(TFSI)2 reduces the overall ion‐molecule interaction and mitigates the strength of ion‐solvent aggregation within the MACC electrolyte, which implies the facilized Cl dissociation from the electrolyte. Besides, Mg(TFSI)2 is verified as an essential buffer to mitigate the corrosion and passivation of Mg anodes caused by the consumption of the electrolyte MgCl2 in Mg//Te dual‐ion cells. These findings provide crucial insights into the development of advanced Mg‐based dual‐ion batteries.

Funder

HORIZON EUROPE Framework Programme

Horizon 2020 Framework Programme

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3