Hybrid Vesicles Enable Mechano‐Responsive Hydrogel Degradation

Author:

Hwang Sung‐Won1ORCID,Lim Chung‐Man2,Huynh Cong Truc3ORCID,Moghimianavval Hossein4ORCID,Kotov Nicholas A.125ORCID,Alsberg Eben36ORCID,Liu Allen P.47ORCID

Affiliation:

1. Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA

2. Department of Materials Science and Engineering University of Michigan Ann Arbor MI 48109 USA

3. Department of Biomedical Engineering University of Illinois Chicago Chicago IL 60612 USA

4. Department of Mechanical Engineering University of Michigan Ann Arbor MI 48109 USA

5. Departments of Biomedical Engineering Macromolecular Science and Engineering Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA

6. Departments of Orthopedic Surgery Pharmacology and Regenerative Medicine and Mechanical and Industrial Engineering University of Illinois Chicago Chicago IL 60612 USA

7. Departments of Biomedical Engineering Biophysics Cellular and Molecular Biology Program Applied Physics Program University of Michigan Ann Arbor MI 48109 USA

Abstract

AbstractStimuli‐responsive hydrogels are intriguing biomimetic materials. Previous efforts to develop mechano‐responsive hydrogels have mostly relied on chemical modifications of the hydrogel structures. Here, we present a simple, generalizable strategy that confers mechano‐responsive behavior on hydrogels. Our approach involves embedding hybrid vesicles, composed of phospholipids and amphiphilic block copolymers, within the hydrogel matrix to act as signal transducers. Under mechanical stress, these vesicles undergo deformation and rupture, releasing encapsulated compounds that can control the hydrogel network. To demonstrate this concept, we embedded vesicles containing ethylene glycol tetraacetic acid (EGTA), a calcium chelator, into a calcium‐crosslinked alginate hydrogel. When compressed, the released EGTA sequesters calcium ions and degrades the hydrogel. This study provides a novel method for engineering mechano‐responsive hydrogels that may be useful in various biomedical applications.

Funder

National Institutes of Health

Office of Naval Research

Kwanjeong Educational Foundation

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3