Durable Multiblock Poly(biphenyl alkylene) Anion Exchange Membranes with Microphase Separation for Hydrogen Energy Conversion

Author:

Ma Yichang1,Hu Chuan2,Yi Guiqin1,Jiang Zhangtang1,Su Xiangyu13,Liu Qinglin1,Lee Ju Yeon4,Lee So Young4,Lee Young Moo2,Zhang Qiugen13ORCID

Affiliation:

1. State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China

2. Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea

3. Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361102 China

4. Hydrogen and Fuel Cell Research Center Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea

Abstract

AbstractAnion exchange membrane fuel cells (AEMFCs) and water electrolysis (AEMWE) show great application potential in the field of hydrogen energy conversion technology. However, scalable anion exchange membranes (AEMs) with desirable properties are still lacking, which greatly hampers the commercialization of this technology. Herein, we propose a series of novel multiblock AEMs based on ether‐free poly(biphenyl ammonium‐b‐biphenyl phenyl)s (PBPA‐b‐BPPs) that are suitable for use in high performance AEMFC and AEMWE systems because of their well‐formed microphase separation structures. The developed AEMs achieved outstanding OH conductivity (162.2 mS cm−1 at 80 °C) with a low swelling ratio, good alkaline stability, and excellent mechanical durability (tensile strength >31 MPa and elongation at break >147 % after treatment in 2 M NaOH at 80 °C for 3750 h). A PBPA‐b‐BPP‐based AEMFC demonstrated a remarkable peak power density of 2.41 W cm−2 and in situ durability for 330 h under 0.6 A cm−2 at 70 °C. An AEMWE device showed a promising performance (6.25 A cm−2 at 2 V, 80 °C) and outstanding in situ durability for 3250 h with a low voltage decay rate (<28 μV h−1). The newly developed PBPA‐b‐BPP AEMs thus show great application prospects for energy conversion devices.

Funder

National Natural Science Foundation of China

National Institute of Nursing Research

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3