Precise Methylation Yields Acceptor with Hydrogen‐Bonding Network for High‐Efficiency and Thermally Stable Polymer Solar Cells

Author:

Wei Weifei1,Zhang Cai'e12,Chen Zhanxiang1,Chen Wei3,Ran Guangliu4,Pan Guangjiu5,Zhang Wenkai4,Müller‐Buschbaum Peter56,Bo Zhishan2,Yang Chuluo1,Luo Zhenghui1ORCID

Affiliation:

1. Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University 518060 Shenzhen China

2. Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University 100875 Beijing China

3. Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology Center for Advanced Material Diagnostic Technology and College of Engineering Physics Shenzhen Technology University 518118 Shenzhen China

4. Department of Physics and Applied Optics Beijing Area Major Laboratory Beijing Normal University 100875 Beijing China

5. Technical University of Munich TUM School of Natural Sciences Department of Physics Chair for Functional Materials James-Franck-Str. 1 85748 Garching Germany

6. Technical University of Munich Heinz Maier-Leibnitz Zentrum (MLZ) Lichtenbergstraße 1 85748 Garching Germany

Abstract

AbstractUtilizing intermolecular hydrogen‐bonding interactions stands for an effective approach in advancing the efficiency and stability of small‐molecule acceptors (SMAs) for polymer solar cells. Herein, we synthesized three SMAs (Qo1, Qo2, and Qo3) using indeno[1,2‐b]quinoxalin‐11‐one (Qox) as the electron‐deficient group, with the incorporation of a methylation strategy. Through crystallographic analysis, it is observed that two Qox‐based methylated acceptors (Qo2 and Qo3) exhibit multiple hydrogen bond‐assisted 3D network transport structures, in contrast to the 2D transport structure observed in gem‐dichlorinated counterpart (Qo4). Notably, Qo2 exhibits multiple and stronger hydrogen‐bonding interactions compared with Qo3. Consequently, PM6 : Qo2 device realizes the highest power conversion efficiency (PCE) of 18.4 %, surpassing the efficiencies of devices based on Qo1 (15.8 %), Qo3 (16.7 %), and Qo4 (2.4 %). This remarkable PCE in PM6 : Qo2 device can be primarily ascribed to the enhanced donor‐acceptor miscibility, more favorable medium structure, and more efficient charge transfer and collection behavior. Moreover, the PM6 : Qo2 device demonstrates exceptional thermal stability, retaining 82.8 % of its initial PCE after undergoing annealing at 65 °C for 250 hours. Our research showcases that precise methylation, particularly targeting the formation of intermolecular hydrogen‐bonding interactions to tune crystal packing patterns, represents a promising strategy in the molecular design of efficient and stable SMAs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3