Localized Ligands Assist Ultrafast Multivalent‐Cation Intercalation Pseudocapacitance

Author:

Xie Luting1,Xu Kui2,Sun Wenlu1,Fan Yingzhu3,Zhang Junyu4,Zhang Yixiao5,Zhang Hui6,Chen Jun1,Shen Yanbin3,Fu Fang1,Kong Huabin1,Wu Guan7,Wu Jihuai1,Chen Liwei5,Chen Hongwei18ORCID

Affiliation:

1. College of Materials Science and Engineering Huaqiao University Xiamen 361021 China

2. School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM) Nanjing University of Technology Nanjing 211816 China

3. i-Lab CAS Center for Excellence in Nanoscience Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 Jiangsu Province China

4. Instrumental Analysis Center Laboratory and Equipment Management Department Huaqiao University Xiamen Fujian 361021 China

5. In-Situ Center for Physical Science School of Chemistry and Chemical Engineering Shanghai Jiaotong University Shanghai 200240 China

6. National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering Ningxia University Yinchuan 750021 China

7. National Engineering Lab for Textile Fiber Materials and Processing Technology School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China

8. Department of Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing College of Materials Science and Engineering Huaqiao University Xiamen 361021 China

Abstract

AbstractRechargeable batteries based on multivalent cation (Mvn+, n>1) carriers are considered potentially low‐cost alternatives to lithium‐ion batteries. However, the high charge‐density Mvn+ carriers generally lead to sluggish kinetics and poor structural stability in cathode materials. Herein, we report an Mvn+ storage via intercalation pseudocapacitance mechanism in a 2D bivalve‐like organic framework featured with localized ligands. By switching from conventional intercalation to localized ligand‐assisted‐intercalation pseudocapacitance, the organic cathode exhibits unprecedented fast kinetics with little structural change upon intercalation. It thus enables an excellent power density of 57 kW kg−1 over 20000 cycles for Ca2+ storage and a power density of 14 kW kg−1 with a long cycling life over 45000 cycles for Zn2+ storage. This work may provide a largely unexploited route toward constructing a local dynamic coordination microstructure for ultrafast Mvn+ storage.

Funder

Natural Science Foundation of Xiamen City

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3