Affiliation:
1. State Key Laboratory of Environment-Friendly Energy Materials School of Materials and Chemistry Southwest University of Science and Technology 621010 Mianyang P. R. China
2. State Key Laboratory of Fine Chemicals Dalian University of Technology 116024 Dalian P. R. China
3. College of Chemistry Chemical Engineering and Materials Science Shandong Normal University 250014 Jinan P. R. China
Abstract
AbstractA series of manganese polypyridine complexes were prepared as CO2 reduction electrocatalysts. Among these catalysts, the intramolecular proton tunneling distance for metal hydride formation (PTD‐MH) vary from 2.400 to 2.696 Å while the structural, energetic, and electronic factors remain essentially similar to each other. The experimental and theoretical results revealed that the selectivity of CO2 reduction reaction (CO2RR) is dominated by the intramolecular PTD‐MH within a difference of ca. 0.3 Å. Specifically, the catalyst functionalized with a pendent phenol group featuring a slightly longer PTD‐MH favors the binding of proton to the [Mn−CO2] adduct rather than the Mn center and results in ca. 100 % selectivity for CO product. In contrast, decreasing the PTD‐MH by attaching a dangling tertiary amine in the same catalyst skeleton facilitates the proton binding on the Mn center and switches the product from CO to HCOOH with a selectivity of 86 %.
Funder
National Key Research and Development Program of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献