Affiliation:
1. The Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Ave Columbus 43210 OH USA
2. Department of Chemical Engineering National Taiwan University No.1, Sec. 4 Roosevelt Rd. Taipei 10617 Taiwan
3. Department of Chemical and Materials Engineering National Central University No. 300, Zhongda Rd., Zhongli Dist. Taoyuan 320317 Taiwan
Abstract
AbstractAlthough many porous materials, including metal–organic frameworks (MOFs), have been reported to selectively adsorb C2H2 in C2H2/CO2 separation processes, CO2‐selective sorbents are much less common. Here, we report the remarkable performance of MFU‐4 (Zn5Cl4(bbta)3, bbta=benzo‐1,2,4,5‐bistriazolate) toward inverse CO2/C2H2 separation. The MOF facilitates kinetic separation of CO2 from C2H2, enabling the generation of high purity C2H2 (>98 %) with good productivity in dynamic breakthrough experiments. Adsorption kinetics measurements and computational studies show C2H2 is excluded from MFU‐4 by narrow pore windows formed by Zn−Cl groups. Postsynthetic F−/Cl− ligand exchange was used to synthesize an analogue (MFU‐4‐F) with expanded pore apertures, resulting in equilibrium C2H2/CO2 separation with reversed selectivity compared to MFU‐4. MFU‐4‐F also exhibits a remarkably high C2H2 adsorption capacity (6.7 mmol g−1), allowing fuel grade C2H2 (98 % purity) to be harvested from C2H2/CO2 mixtures by room temperature desorption.
Funder
National Aeronautics and Space Administration
Directorate for Mathematical and Physical Sciences
National Science and Technology Council
Ministry of Education