Photoinduced C(sp3)−H Bicyclopentylation Enabled by an Electron Donor–Acceptor Complex‐Mediated Chemoselective Three‐Component Radical Relay

Author:

Dang Xiaobo1,Li Zhixuan1,Shang Jinlong1,Zhang Chenyang1,Wang Chao123,Xu Zhaoqing12ORCID

Affiliation:

1. Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China

2. Research Unit of Peptide Science, 2019RU066 Chinese Academy of Medical Sciences 199 West Donggang Road Lanzhou 730000 China

3. Technology & Engineering Institute of Lanzhou University Gongyuan Road Baiyin 730900 China

Abstract

AbstractThe photoredox electron donor–acceptor (EDA) complex‐mediated radical coupling reaction has gained prominence in the field of organic synthesis, finding widespread application in two‐component coupling reactions. However, EDA complex‐promoted multi‐component reactions are not well developed with only a limited number of examples have been reported. Herein, we report a photoinduced and EDA complex‐promoted highly chemoselective three‐component radical arylalkylation of [1.1.1]propellane, which allows the direct functionalization of C(sp3)−H with bicyclo[1.1.1]pentanes (BCP)‐aryl groups under mild conditions. A variety of unnatural α‐amino acids, featuring structurally diversified 1,3‐disubstituted BCP moieties, were synthesized in a single‐step process. Notably, leveraging the high tension release of [1.1.1]propellane, the highly unstable transient aryl radical undergoes rapid conversion into a relatively stable tertiary alkyl transient radical, and consequently, the competing side‐reaction of two‐component coupling was entirely suppressed. The strategic use of this transient radical conversion approach would be useful for the design of diverse EDA complex‐mediated multi‐component reactions. It is noteworthy that the highly chemoselective late‐stage incorporation of the 1,3‐disubstituted BCP pharmacophores into peptides was achieved both in liquid‐phase and solid‐phase reactions. This advancement is anticipated to have significant application potential in the future development of peptide drugs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3