In Situ Electrochemical Activation of Hydroxyl Polymer Cathode for High‐Performance Aqueous Zinc–Organic Batteries

Author:

Sun Qi‐Qi12,Sun Tao3,Du Jia‐Yi14,Xie Zi‐Long14,Yang Dong‐Yue14,Huang Gang14,Xie Hai‐Ming2,Zhang Xin‐Bo14ORCID

Affiliation:

1. State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China

2. National & Local United Engineering Laboratory for Power Battery Department of Chemistry Northeast Normal University Changchun Jilin 130024 China

3. Institute of Quantum and Sustainable Technology School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang 212013 China

4. School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 China

Abstract

AbstractThe slow reaction kinetics and structural instability of organic electrode materials limit the further performance improvement of aqueous zinc‐organic batteries. Herein, we have synthesized a Z‐folded hydroxyl polymer polytetrafluorohydroquinone (PTFHQ) with inert hydroxyl groups that could be partially oxidized to the active carbonyl groups through the in situ activation process and then undertake the storage/release of Zn2+. In the activated PTFHQ, the hydroxyl groups and S atoms enlarge the electronegativity region near the electrochemically active carbonyl groups, enhancing their electrochemical activity. Simultaneously, the residual hydroxyl groups could act as hydrophilic groups to enhance the electrolyte wettability while ensuring the stability of the polymer chain in the electrolyte. Also, the Z‐folded structure of PTFHQ plays an important role in reversible binding with Zn2+ and fast ion diffusion. All these benefits make the activated PTFHQ exhibit a high specific capacity of 215 mAh g−1 at 0.1 A g−1, over 3400 stable cycles with a capacity retention of 92 %, and an outstanding rate capability of 196 mAh g−1 at 20 A g−1.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Wiley

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3