Affiliation:
1. Anhui Agricultural University Anhui Provincial Engineering Center for High Performance Biobased Nylons Hefei 230036 China
2. Chinese Academy of Forestry Institute of Chemical Industry of Forest Products Nanjing 210042 China
Abstract
AbstractDesigning sustainable materials with tunable mechanical properties, intrinsic degradability, and recyclability from renewable biomass through a mild process has become vital in polymer science. Traditional phenolic resins are generally considered to be not degradable or recyclable. Here we report the design and synthesis of linear and network structured phenolic polymers using facile polycondensation between natural aldehyde‐bearing phenolic compounds and polymercaptans. Linear phenolic products are amorphous with Tg between −9 °C and 12 °C. Cross‐linked networks from vanillin and its di‐aldehyde derivative exhibited excellent mechanical strength between 6–64 MPa. The connecting dithioacetals are associatively adaptable strong bonds and susceptible to degradation in oxidative conditions to regenerate vanillin. These results highlight the potential of biobased sustainable phenolic polymers with recyclability and selective degradation, as a complement to the traditional phenol‐formaldehyde resins.
Funder
Natural Science Foundation of Anhui Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献