Toward Simultaneous Dense Zinc Deposition and Broken Side‐Reaction Loops in the Zn//V2O5 System

Author:

Wang Huirong1,Zhou Anbin1,Hu Zhengqiang1,Hu Xin1,Zhang Fengling1,Song Zhihang1,Huang Yongxin12,Cui Yanhua3,Cui Yixiu3,Li Li124,Wu Feng124,Chen Renjie124ORCID

Affiliation:

1. Department Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 China

2. Advanced Technology Research Institute (Jinan) Beijing Institute of Technology Jinan 250300 China

3. Institute of Electronic Engineering China Academy of Engineering Physics Mianyang 621900 China

4. Collaborative Innovation Center of Electric Vehicles in Beijing Beijing 100081 China

Abstract

AbstractThe Zn//V2O5 system not only faces the incontrollable growth of zinc (Zn) dendrites, but also withstands the cross‐talk effect of by‐products produced from the cathode side to the Zn anode, inducing interelectrode talk and aggravating battery failure. To tackle these issues, we construct a rapid Zn2+‐conducting hydrogel electrolyte (R‐ZSO) to achieve Zn deposition modulation and side reaction inhibition in Zn//V2O5 full cells. The polymer matrix and BN exhibit a robust anchoring effect on SO42−, accelerating Zn2+ migration and enabling dense Zn deposition behavior. Therefore, the Zn//Zn symmetric cells based on the R‐ZSO electrolyte can operate stably for more than 1500 h, which is six times higher than that of cells employing the blank electrolyte. More importantly, the R‐ZSO hydrogel electrolyte effectively decouples the cross‐talk effects, thus breaking the infinite loop of side reactions. As a result, the Zn//V2O5 cells using this modified hydrogel electrolyte demonstrate stable operation over 1,000 cycles, with a capacity loss rate of only 0.028 % per cycle. Our study provides a promising gel chemistry, which offers a valuable guide for the construction of high‐performance and multifunctional aqueous Zn‐ion batteries.

Funder

National Natural Science Foundation of China

Young Elite Scientists Sponsorship Program by Tianjin

Beijing Outstanding Young Talents

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3