Reaction Environment Regulation for Electrocatalytic CO2 Reduction in Acids

Author:

Zeng Min1,Fang Wensheng2,Cen Yiren1,Zhang Xinyi1,Hu Yongming1,Xia Bao Yu2ORCID

Affiliation:

1. Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices School of Microelectronics Hubei University 368 Youyi Road Wuhan 430062 China

2. School of Chemistry and Chemical Engineering State Key Laboratory of Materials Processing and Die & Mould Technology Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology (HUST) 1037 Luoyu Rd Wuhan 430074 China

Abstract

AbstractThe electrocatalytic CO2 reduction reaction (CO2RR) is a sustainable route for converting CO2 into value‐added fuels and feedstocks, advancing a carbon‐neutral economy. The electrolyte critically influences CO2 utilization, reaction rate and product selectivity. While typically conducted in neutral/alkaline aqueous electrolytes, the CO2RR faces challenges due to (bi)carbonate formation and its crossover to the anolyte, reducing efficiency and stability. Acidic media offer promise by suppressing these processes, but the low Faradaic efficiency, especially for multicarbon (C2+) products, and poor electrocatalyst stability persist. The effective regulation of the reaction environment at the cathode is essential to favor the CO2RR over the competitive hydrogen evolution reaction (HER) and improve long‐term stability. This review examines progress in the acidic CO2RR, focusing on reaction environment regulation strategies such as electrocatalyst design, electrode modification and electrolyte engineering to promote the CO2RR. Insights into the reaction mechanisms via in situ/operando techniques and theoretical calculations are discussed, along with critical challenges and future directions in acidic CO2RR technology, offering guidance for developing practical systems for the carbon‐neutral community.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3