Electroreductive Synthesis of Nickel(0) Complexes**

Author:

Rubel Camille Z.12ORCID,Cao Yilin1ORCID,El‐Hayek Ewing Tamara1,Laudadio Gabriele1ORCID,Beutner Gregory L.3ORCID,Wisniewski Steven R.3,Wu Xiangyu4ORCID,Baran Phil S.1ORCID,Vantourout Julien C.25ORCID,Engle Keary M.1ORCID

Affiliation:

1. Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA

2. Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICMBS UMR 5246 du CNRS) Université Lyon, Université Lyon 1 1 rue Victor Grignard 69100 Villeurbanne France

3. Chemical Process Development Bristol Myers Squibb 1 Squibb Drive New Brunswick NJ 08903 USA

4. Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA

5. Syngenta Crop Protection AG Schaffauserstrasse 4332 Stein Switzerland

Abstract

AbstractOver the last fifty years, the use of nickel catalysts for facilitating organic transformations has skyrocketed. Nickel(0) sources act as useful precatalysts because they can enter a catalytic cycle through ligand exchange, without needing to undergo additional elementary steps. However, most Ni(0) precatalysts are synthesized with stoichiometric aluminum–hydride reductants, pyrophoric reagents that are not atom‐economical and must be used at cryogenic temperatures. Here, we demonstrate that Ni(II) salts can be reduced on preparative scale using electrolysis to yield a variety of Ni(0) and Ni(II) complexes that are widely used as precatalysts in organic synthesis, including bis(1,5‐cyclooctadiene)nickel(0) [Ni(COD)2]. This method overcomes the reproducibility issues of previously reported methods by standardizing the procedure, such that it can be performed anywhere in a robust manner. It can be transitioned to large scale through an electrochemical recirculating flow process and extended to an in situ reduction protocol to generate catalytic amounts of Ni(0) for organic transformations. We anticipate that this work will accelerate adoption of preparative electrochemistry for the synthesis of low‐valent organometallic complexes in academia and industry.

Funder

National Science Foundation

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3