Affiliation:
1. Shanghai Key Laboratory of Green Chemistry and Chemical Processes State Key Laboratory of Petroleum Molecular & Process Engineering School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
2. Institute of Eco-Chongming Shanghai 202162 P. R. China
3. State Key Laboratory of High-Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
Abstract
AbstractDuring the electrocatalytic NO3− reduction reaction (NO3−RR) under neutral condition, the activation of H2O to generate H* and the inhibition of inter‐H* species binding, are critically important but remain challenging for suppressing the non‐desirable hydrogen evolution reaction (HER). Here, a Mn‐doped Co(OH)2 (named as Mn‐Co(OH)2) has been synthesized by in situ reconstruction in the electrolyte, which is able to dissociate H2O molecules but inhibits the binding of H* species between each other owing to the increased interatomic spacing by the Mn‐doping. The Mn‐Co(OH)2 electrocatalyst offers a faradaic efficiency (FE) of as high as 98.9±1.7% at −0.6 V vs. the reversible hydrogen electrode (RHE) and an energy efficiency (EE) of 49.90±1.03% for NH3 production by NO3−RR, which are among the highest of the recently reported state‐of‐the‐art catalysts in neutral electrolyte. Moreover, negligible degradation at −200 mA cm−2 has been found for at least 500 h, which is the longest catalytic durations ever reported. This work paves a novel approach for the design and synthesis of efficient NO3−RR electrocatalysts.
Funder
National Key Research and Development Program of China
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献