Affiliation:
1. State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
2. Ocean Hydrogen Energy R&D Center Research Institute of Tsinghua University in Shenzhen Shenzhen 518057 P. R. China
Abstract
AbstractCommercial alkaline water electrolysers typically operate at 80 °C to minimize energy consumption. However, NiFe‐based catalysts, considered as one of the most promising candidates for anode, encounter the bottleneck of high solubility at such temperatures. Herein, we discover that the dissolution of NiFe layered double hydroxides (NiFe‐LDH) during operation not only leads to degradation of anode itself, but also deactivates cathode for water splitting, resulting in decay of overall electrocatalytic performance. Aiming to suppress the dissolution, we employed oxyanions as inhibitors in electrolyte. The added phosphates to the electrolyte inhibit the loss of NiFe‐LDH active sites at 400 mA cm−2 to 1/3 of the original amount, thus reducing the rate of performance decay by 25‐fold. Furthermore, the usage of borates, sulfates, and carbonates yields similar results, demonstrating the reliability and universality of the active site dissolution inhibitor, and its role in elevated water electrolysis.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China