Affiliation:
1. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Frontiers Science Center for New Organic Matter Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
2. Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
Abstract
AbstractLi‐O2 batteries have garnered much attention due to their high theoretical energy density. However, the irreversible lithium plating/stripping on the anode limits their performance, which has been paid little attention. Herein, a solvation‐regulated strategy for stable lithium anodes in tetraethylene glycol dimethyl ether (G4) based electrolyte is attempted in Li‐O2 batteries. Trifluoroacetate anions (TFA−) with strong Li+ affinity are incorporated into the lithium bis(fluorosulfonyl)imide (LiTFSI)/G4 electrolyte to attenuate the Li+‐G4 interaction and form anion‐dominant solvates. The bisalt electrolyte with 0.5 M LiTFA and 0.5 M LiTFSI mitigates G4 decomposition and induces an inorganic‐rich solid electrolyte interphase (SEI). This contributes to decreased desolvation energy barrier from 58.20 to 46.31 kJ mol−1, compared with 1.0 M LiTFSI/G4, for facile interfacial Li+ diffusion and high efficiency. It yields extended lifespan of 120 cycles in Li‐O2 battery with a limited Li anode (7 mAh cm−2). This work gains comprehensive insights into rational electrolyte design for Li‐O2 batteries.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Tianjin Municipal Science and Technology Commission
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献