Affiliation:
1. Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
2. College of Chemistry and Material Science Sichuan Normal University Chengdu 610068 China
3. Hefei National Laboratory Hefei 230088 China
Abstract
AbstractPhotocatalytic CO2 reduction is one of the best solutions to solve the global energy crisis and to realize carbon neutralization. The tetradentate phosphine‐bipyridine (bpy)‐phosphine (PNNP)‐type Ir(III) photocatalyst, Mes‐IrPCY2, was reported with a high HCOOH selectivity but the photocatalytic mechanism remains elusive. Herein, we employ electronic structure methods in combination with radiative, nonradiative, and electron transfer rate calculations, to explore the entire photocatalytic cycle to either HCOOH or CO, based on which a new mechanistic scenario is proposed. The catalytic reduction reaction starts from the generation of the precursor metal‐to‐ligand charge transfer (3MLCT) state. Subsequently, the divergence happens from the 3MLCT state, the single electron transfer (SET) and deprotonation process lead to the formation of one‐electron‐reduced species and Ir(I) species, which initiate the reduction reaction to HCOOH and CO, respectively. Interestingly, the efficient occurrence of proton or electron transfer reduces barriers of critical steps. In addition, nonadiabatic transitions play a nonnegligible role in the cycle. We suggest a lower free‐energy barrier in the reaction‐limiting step and the very efficient SET in 3MLCT are cooperatively responsible for a high HCOOH selectivity. The gained mechanistic insights could help chemists to understand, regulate, and design photocatalytic CO2 reduction reaction of similar function‐integrated molecular photocatalyst.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献