Regulating Steric Hindrance of Porous Organic Polymers in Composite Solid‐State Electrolytes to Induce the Formation of LiF‐Rich SEI in Li‐Ion Batteries

Author:

Zhao Zishao1,Zhou Xuanyi1,Zhang Biao1,Huang Fenfen1,Wang Yan2,Ma Zengsheng1,Liu Jun3ORCID

Affiliation:

1. National-Provincial Laboratory of Special Function Thin Film Materials School of Materials Science and Engineering Xiangtan University Hunan 411105 China

2. School of Information and Electronic Engineering Hunan University of Science and Technology Hunan 411201 China

3. Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials School of Materials Science and Engineering South China University of Technology Guangzhou 510641 China

Abstract

AbstractLithium fluoride (LiF) at the solid electrolyte interface (SEI) contributes to the stable operation of polymer‐based solid‐state lithium metal batteries. Currently, most of the methods for constructing lithium fluoride SEI are based on the design of polar groups of fillers. However, the mechanism behind how steric hindrance of fillers impacts LiF formation remains unclear. This study synthesizes three kinds of porous polyacetal amides (PAN‐X, X=NH2, NH‐CH3, N‐(CH3)2) with varying steric hindrances by regulating the number of methyl substitutions of nitrogen atoms on the reaction monomer, which are incorporated into polymer composite solid electrolytes, to investigate the regulation mechanism of steric hindrance on the content of lithium fluoride in SEI. The results show that bis(trifluoromethanesulfonyl)imide (TFSI) will compete for the charge without steric effect, while excessive steric hindrance hinders the interaction between TFSI and polar groups, reducing charge acquisition. Only when one hydrogen atom on the amino group is replaced by a methyl group, steric hindrance from the methyl group prevents TFSI from capturing charge in that direction, thereby facilitating the transfer of charge from the polar group to a separate TFSI and promoting maximum LiF formation. This work provides a novel perspective on constructing LiF‐rich SEI.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3