Affiliation:
1. Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 214122 Wuxi P. R. China
2. College of Automation Hangzhou Dianzi University 310018 Hangzhou China
3. Institute of High Energy Physics Chinese Academy of Sciences 100049 Beijing P. R. China
Abstract
AbstractMembranes are important in the pharmaceutical industry for the separation of antibiotics and salts. However, its widespread adoption has been hindered by limited control of the membrane microstructure (pore architecture and free‐volume elements), separation threshold, scalability, and operational stability. In this study, 4,4′,4′′,4′′′‐methanetetrayltetrakis(benzene‐1,2‐diamine) (MTLB) as prepared as a molecular building block for fabricating thin‐film composite membranes (TFCMs) via interfacial polymerization. The relatively large molecular size and rigid molecular structure of MTLB, along with its non‐coplanar and distorted conformation, produced thin and defect‐free selective layers (~27 nm) with ideal microporosities for antibiotic desalination. These structural advantages yielded an unprecedented high performance with a water permeance of 45.2 L m−2 h−1 bar−1 and efficient antibiotic desalination (NaCl/adriamycin selectivity of 422). We demonstrated the feasibility of the industrial scaling of the membrane into a spiral‐wound module (with an effective area of 2.0 m2). This module exhibited long‐term stability and performance that surpassed those of state‐of‐the‐art membranes used for antibiotic desalination. This study provides a scientific reference for the development of high‐performance TFCMs for water purification and desalination in the pharmaceutical industry.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities