Probing Particle‐Carbon/Binder Degradation Behavior in Fatigued Layered Cathode Materials through Machine Learning Aided Diffraction Tomography

Author:

Hua Weibo123ORCID,Chen Jinniu1,Ferreira Sanchez Dario4,Schwarz Björn3,Yang Yang5,Senyshyn Anatoliy6,Wu Zhenguo2,Shen Chong‐Heng7,Knapp Michael3ORCID,Ehrenberg Helmut3ORCID,Indris Sylvio3ORCID,Guo Xiaodong2ORCID,Ouyang Xiaoping8

Affiliation:

1. School of Chemical Engineering and Technology Xi'an Jiaotong University No.28, West Xianning Road Xi'an, Shaanxi 710049 China

2. School of Chemical Engineering Sichuan University No. 24 South Section 1, Yihuan Road 610065 Chengdu China

3. Institute for Applied Materials (IAM) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany

4. Swiss Light Source Paul Scherrer Institut (PSI) Forschungsstrasse 111 Villigen 5232 Switzerland

5. National Synchrotron Light Source II (NSLS-II) Brookhaven National Laboratory Upton NY, 11973 USA

6. Heinz Maier-Leibnitz Zentrum Technische Universität München Lichtenbergstrasse 1 D-85747 Garching Germany

7. Contemporary Amperex Technology Co. Ningde 352100 China

8. School of Materials Science and Engineering Xiangtan University Xiangtan 411105 China

Abstract

AbstractUnderstanding how reaction heterogeneity impacts cathode materials during Li‐ion battery (LIB) electrochemical cycling is pivotal for unraveling their electrochemical performance. Yet, experimentally verifying these reactions has proven to be a challenge. To address this, we employed scanning μ‐XRD computed tomography to scrutinize Ni‐rich layered LiNi0.6Co0.2Mn0.2O2 (NCM622) and Li‐rich layered Li[Li0.2Ni0.2Mn0.6]O2 (LLNMO). By harnessing machine learning (ML) techniques, we scrutinized an extensive dataset of μ‐XRD patterns, about 100,000 patterns per slice, to unveil the spatial distribution of crystalline structure and microstrain. Our experimental findings unequivocally reveal the distinct behavior of these materials. NCM622 exhibits structural degradation and lattice strain intricately linked to the size of secondary particles. Smaller particles and the surface of larger particles in contact with the carbon/binder matrix experience intensified structural fatigue after long‐term cycling. Conversely, both the surface and bulk of LLNMO particles endure severe strain‐induced structural degradation during high‐voltage cycling, resulting in significant voltage decay and capacity fade. This work holds the potential to fine‐tune the microstructure of advanced layered materials and manipulate composite electrode construction in order to enhance the performance of LIBs and beyond.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3