Affiliation:
1. School of Chemistry Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University Tel Aviv 69978 Israel
2. Department of Chemical and Structural Biology Weizmann Institute of Science Rehovot 7610001 Israel
Abstract
AbstractThe chemical synthesis of site‐specifically modified transcription factors (TFs) is a powerful method to investigate how post‐translational modifications (PTMs) influence TF‐DNA interactions and impact gene expression. Among these TFs, Max plays a pivotal role in controlling the expression of 15 % of the genome. The activity of Max is regulated by PTMs; Ser‐phosphorylation at the N‐terminus is considered one of the key regulatory mechanisms. In this study, we developed a practical synthetic strategy to prepare homogeneous full‐length Max for the first time, to explore the impact of Max phosphorylation. We prepared a focused library of eight Max variants, with distinct modification patterns, including mono‐phosphorylated, and doubly phosphorylated analogues at Ser2/Ser11 as well as fluorescently labeled variants through native chemical ligation. Through comprehensive DNA binding analyses, we discovered that the phosphorylation position plays a crucial role in the DNA‐binding activity of Max. Furthermore, in vitro high‐throughput analysis using DNA microarrays revealed that the N‐terminus phosphorylation pattern does not interfere with the DNA sequence specificity of Max. Our work provides insights into the regulatory role of Max′s phosphorylation on the DNA interactions and sequence specificity, shedding light on how PTMs influence TF function.
Funder
Higher Council for Science and Technology
Israel Science Foundation