Scalable Production of 2D Non‐Layered Metal Oxides through Metal–Organic Gel Rapid Redox Transformation

Author:

Liu Zhiyuan1,Wang Dong12ORCID,Yang Huazeng1,Feng Liu3,Xu Xin1,Si Weimeng1,Hou Yongzhao1,Wen Guangwu12,Zhang Rui1,Qiu Jieshan4

Affiliation:

1. School of Materials Science and Engineering Shandong University of Technology Zibo 255000 P. R. China

2. Shandong Silicon Nano New Material Technology Co. LTD Zibo 255000 P. R. China

3. Analysis and Testing Center Shandong University of Technology Zibo 255000 P. R. China

4. State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China

Abstract

AbstractTwo‐dimensional (2D) nonlayered metal compounds with porous structure show broad application prospects in electrochemistry‐related fields due to their abundant active sites, open ions/electrons diffusion channels, and faradaic reactions. However, scalable and universal synthesis of 2D porous compounds still remains challenging. Here, inspired by blowing gum, a metal‐organic gel (MOG) rapid redox transformation (MRRT) strategy is proposed for the mass production of a wide variety of 2D porous metal oxides. Adequate crosslinking degree of MOG precursor and its rapid redox with NO3 are critical for generating gas pressure from interior to exterior, thus blowing the MOG into 2D carbon nanosheets, which further act as self‐sacrifice template for formation of oxides with porous and ultrathin structure. The versatility of this strategy is demonstrated by the fabrication of 39 metal oxides, including 10 transition metal oxides, one II‐main group oxide, two III‐main group oxides, 22 perovskite oxides, four high‐entropy oxides. As an illustrative verification, the 2D transition metal oxides exhibit excellent capacitive deionization (CDI) performance. Moreover, the assembled CDI cell could act as desalting battery to supply electrical energy during electrode regeneration. This MRRT strategy offers opportunities for achieving universal synthesis of 2D porous oxides with nonlayered structures and studying their electrochemistry‐related applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3