A Fully Conjugated Covalent Organic Framework with Oxidative and Reductive Sites for Photocatalytic Carbon Dioxide Reduction with Water

Author:

Cheng Yuan‐Zhe12,Ji Wenyan1,Hao Peng‐Yuan12,Qi Xue‐Han3,Wu Xianxin42,Dou Xiao‐Meng1,Bian Xin‐Yue12,Jiang Di12,Li Fa‐Tang3,Liu Xin‐Feng42,Yang Dong‐Hui1,Ding Xuesong1,Han Bao‐Hang12ORCID

Affiliation:

1. CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China

2. University of Chinese Academy of Sciences Beijing 100049 China

3. College of Science and International Joint Laboratory of New Energy Hebei University of Science and Technology Shijiazhuang 050018 China

4. CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China

Abstract

AbstractConstructing a powerful photocatalytic system that can achieve the carbon dioxide (CO2) reduction half‐reaction and the water (H2O) oxidation half‐reaction simultaneously is a very challenging but meaningful task. Herein, a porous material with a crystalline topological network, named viCOF‐bpy‐Re, was rationally synthesized by incorporating rhenium complexes as reductive sites and triazine ring structures as oxidative sites via robust −C=C− bond linkages. The charge‐separation ability of viCOF‐bpy‐Re is promoted by low polarized π‐bridges between rhenium complexes and triazine ring units, and the efficient charge‐separation enables the photogenerated electron–hole pairs, followed by an intramolecular charge‐transfer process, to form photogenerated electrons involved in CO2 reduction and photogenerated holes that participate in H2O oxidation simultaneously. The viCOF‐bpy‐Re shows the highest catalytic photocatalytic carbon monoxide (CO) production rate (190.6 μmol g−1 h−1 with about 100 % selectivity) and oxygen (O2) evolution (90.2 μmol g−1 h−1) among all the porous catalysts in CO2 reduction with H2O as sacrificial agents. Therefore, a powerful photocatalytic system was successfully achieved, and this catalytic system exhibited excellent stability in the catalysis process for 50 hours. The structure–function relationship was confirmed by femtosecond transient absorption spectroscopy and density functional theory calculations.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3