A Pyrene‐Fused Dimerized Acceptor for Ternary Organic Solar Cells with 19% Efficiency and High Thermal Stability

Author:

Liu Xucong1,Zhang Zhou1,Wang Chao1,Zhang Cuifen2,Liang Shijie1,Fang Haisheng1,Wang Bo1,Tang Zheng2,Xiao Chengyi1ORCID,Li Weiwei1ORCID

Affiliation:

1. Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China

2. Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China

Abstract

AbstractA pyrene‐fused dimerized electron acceptor has been successfully synthesized and subsequently incorporated as the third component in ternary organic solar cells (OSCs). Diverging from the traditional dimerized acceptors with a linear configuration, this novel electron acceptor displays a distinctive “butterfly‐like” structure, comprising two Y‐acceptors as wings fused with a pyrene‐based backbone. The extended π‐conjugated backbone and the electron‐donating nature of pyrene enable the new acceptor to show low solubility, elevated glass transition temperature (Tg), and low‐lying frontier energy levels. Consequently, the new dimerized acceptor seamlessly integrates as the third component into ternary OSCs, enhancing electron transporting properties, reducing non‐radiative voltage loss, and elevating open‐circuit voltage. These merits have enabled the ternary OSCs to show an exceptional efficiency of 19.07%, a marked improvement compared to the 17.6% attained in binary OSCs. More importantly, the high Tg exhibited by the pyrene‐fused electron acceptor helps to stabilize the morphology of the photoactive layer thermal‐treated at 70 °C, retaining 88.7% efficiency over 600 hours. For comparison, binary OSCs experience a decline to 73.7% efficiency after the same duration. These results indicate that the “butterfly‐like” design and the incorporation of a pyrene unit is a promising strategy in the development of dimerized electron acceptors for OSCs.

Funder

Ministry of Science and Technology

Natural Science Foundation of Beijing Municipality

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3